A SECOND DETECTOR FOR THE ELECTRON ION COLLIDER

KAWTAR HAFIDI

Thursday January 7, 2016

Electron Ion Collider User Meeting, UC Berkeley

OUTLINE

- Why two detectors for the EIC?
- A complementary option for a second detector
- Physics examples that would benefit from such a device
- Taking calculated risk in detector technologies?
- Summary

ONE DETECTOR VS. TWO COMPLEMENTARY DETECTORS

Option 1: One Detector

- Baseline, multi-purpose, full acceptance detector
- Optimized to support the physics program summarized in the white paper

Option 2: Two Complementary Detectors

- Complementary sensitivity to physics, backgrounds and fake effects
- Cross-checks on discoveries and important physics results
- Higher efficiency of operation
- Combine results for precision measurements
- Increase scientific productivity
- Increase opportunities for meaningful contributions to the program and accommodating the research interests of more physicists
- Forefront technologies will enhance leadership and training opportunities

H1 AND ZEUS DETECTORS AT HERA

ZEUS Detector

AM AID

- Liquid Argon Calorimeter
- Optimized for the reconstruction of the scattered electron
- Uranium-scintillator Calorimeter
- Optimized for precise calorimetric measurements of hadronic final states (jets)
- Both detectors are multipurpose ($\sim 4\pi$ coverage) have complementary strengths
- Measurements from the two detectors have been combined for more precise results
- The two detectors have been used to cross-check each other measurements

H1 AND ZEUS - INDEPENDENT CROSS-CHECKS

OPTIONS FOR A SECOND DETECTOR

The **first detector** is designed with excellent tracking and PID performance

A second detector:

- lacktriangle smaller in size with 4π hadronic calorimeter and muon detection, and high-resolution EM calorimetry
- higher luminosity (~ up to 50%)

TWO DETECTORS CONFIGURATION

Detector 1

- Large central detector (~10.5m)
- Detection of individual (charged) particles
- Excellent tracking to very small angle
- Excellent hadron PID
- Simpler EM calorimetry
- Limited hadron calorimetry

Detector 2

- Smaller central detector (~8m)
- Neutrals and high multiplicity jets
- High resolution 4π EMCAL
- 4π hadronic calorimetry- close to the beam pipe
- 4π Muon identification
- Higher luminosity

ENHANCED MEASUREMENTS FOR DEEP VIRTUAL COMPTON SCATTERING INCLUDING NEUTRAL FINAL STATES

- ☐ Final state: Scattered electron, photon and proton
- ☐ Large background from neutral pions
- → Proton: undetected or measured in the far forward region

- ☐ High resolution ElectromagneticCalorimeter
- Low mass tracker and low magnetic field to extend kinematics for low momentum electrons
- Higher luminosity
- Recoil baryon detection similar to detector 1

DETECTOR 2: ELECTROMAGNETIC CALORIMETER AND TRACKING OPTIONS

Lead-tungstate (PbWO₄) crystals offer

- Good energy resolution
- Fast response
- High density allowing a compact design
- 2.1cm x 2.1cm x 20 cm barrel cell size (~22X₀)
 - 1.5% energy resolution for 1 GeV photons
 - Better than 1% energy resolution for photons above 3 GeV

Tracker: KLOE Drift Chamber (INFN)

- 3.3m long and 4m in diameter
- Low mass He-based Drift Chamber $\Delta p_{\perp}/p_{\perp} = 7.4 \times 10^{-4} p_{\perp} \oplus 1.9 \times 10^{-3}$
- Limited dE/dx resolution (~4%)
- Similar design proposed for the ILC with cluster counting as an alternative to TPC - improved hadron PID

OPEN CHARM PHYSICS - VERTEXING

- □ Open charm can be measured with good vertex reconstruction even when hadron PID is limited
- \square D* mesons reconstructed using the golden decay channel $D^{*+} \to D^0 \pi_s^+ \to (K^- \pi^+) \pi_s^+$
- □ Long lifetime of charm quark c τ_c ~ 100-300 µm displaced vertex
- ☐ Low Q² electron detection is beneficial photoproduction

JETS MEASUREMENTS – HADRONIC CALORIMETER Ivan Vitev's Talk

- Detector 1:
 - Jets are identified via reconstruction of individual tracks

□ Detector 2:

reconstructs jets with high multiplicity through calorimetry

Jets production in nuclei

Argonne Argonne

- Charged-current (CC) DIS
- Only jets are detected in the final state!
- Missing p_T from neutrino

CC DIS Measurements (unique to detector 2):

- Only information from hadronic calorimeter is used to reconstruct kinematic variables (Q², x, y, etc.)
- Muon chamber could help to reduce a background coming form Cosmic and halo muon (missing E_⊤ signature)
- Good 4π hadronic calorimeter is essential
- 4π coverage Muon chamber could help reducing background

DETECTOR 2: HIGH PERFORMANCE HADRONIC CALORIMETER OPTIONS

ZEUS Uranium Calorimeter - Reuse

ZEUS	Total
FCAL Forward	7λ ~152cm
BCAL Barrel	5λ~100cm
RCAL Rear	4λ ~86cm

Compact calorimeter that can fit many interaction lengths

Energy resolution

> Electrons:

 $\frac{\sigma_E}{E} = \frac{18\%}{\sqrt{E}}$

> Hadrons:

$$\frac{\sigma_E}{E} = \frac{35\%}{\sqrt{E}}$$

SiD particle flow calorimeter (ILC)

- High granularity
- Small size
- Electromagnetic leakage suppression

CHARGED LEPTON FLAVOR VIOLATION (LFV) (see Yulia Furletova Talk)

HERA: $L\sim 10^{30-31} \text{cm}^{-2} \text{s}^{-1}$ (0.5 fb⁻¹)

EIC: $L\sim10^{34}$ cm⁻² s⁻¹ (>50 fb⁻¹)

- Tau identification:
- $\tau \rightarrow e \nu \nu$
- \bullet τ \rightarrow μ ν ν
- $\tau \rightarrow 1-3$ jets

Hadronic calorimeter for jets measurements and 4π muon chamber are essential for LFV physics – (unique to detector 2)

DETECTOR 2 INTERACTION REGION

- Detector 2 extended detector region would be similar to detector 1 including crossing angle
- Differences exist for near central detector :
 - ☐ Higher luminosity
 - ☐ No dipole before FFQ to allow HCAL coverage all the way to beam pipe
 - resulting in limitation on small angle tracking

PHYSICS MEASUREMENTS WILL OF COURSE DICTATE THE DETECTOR DESIGN AND PARAMETERS

Complementary technologies should be considered. Maybe we can even afford high-risk technologies!

Increase in detector R&D funding is needed!

SUMMARY: WE NEED TWO DETECTORS FOR THE EIC!

- Second detector allows to optimize two detectors with different focus:
 - PID (low-multiplicity jets) vs. Calorimetry (high-multiplicity jets)
- Second detector will allow to cross-check physics results and combine data (x2 luminosity)
- ☐ It will strengthen the physics program at the EIC and can expand it beyond the white paper
- Provide opportunity for international collaboration strong involvement

MANY THANKS TO: THE ORGANIZERS **AND MY COLLABORATORS:** MARKUS DIEFENTHALER, ROLF ENT, YULIA FURLETOVA, PAWEL NADEL-TURONSKI

